
Grailog KS Viz 2.0:

Graph-Logic

Knowledge Visualization by

XML-Based Translation

Leah Bidlake

The 6th Atlantic Workshop on

Semantics and Services (AWoSS 2015)

December 9th, 2015

UNB Fredericton

Outline

• Introduction

– Knowledge Visualization

– Graph Inscribed Logic (Grailog)

• Grailog KS Viz

– Architecture

– Supported Elements

– Structure

– Example

• Conclusions & Future Work

1

Knowledge Visualization

• Expression of knowledge through

visualizations in order to communicate

and analyze knowledge

• Visualizations increase the rate and quality of

(human-to-human and machine-to-human)

knowledge transfer

• (Semi-)Formal knowledge as used in

Data Modeling, the Semantic Web, etc.

can be visualized using (generalized) graphs

2

Graph Inscribed Logic (Grailog)

• Grailog used to present languages of the

Rule Markup Language (RuleML) system

• Highly expressive generalized graphs for

logical knowledge visualization

(in labelnode normal form)

• Contain directed n-ary hyperarcs that

begin at a class/relation labelnode,

pass through n-1 intermediate argument

labelnodes, and point to the nth argument

labelnode

3

Grailog KS Viz 2.0: Subset of

Horn Logic with Equality in SVG (1)

• XML documents containing HornlogEq

RuleML are transformed – using an

XSLT stylesheet and processor –

into a Grailog visualization in SVG format

that contains JavaScript

• Post-processing the SVG removes

the JavaScript, which is no longer needed

after positioning the SVG elements

4

Grailog KS Viz 2.0: Subset of

Horn Logic with Equality in SVG (2)

5

XSLT

Processor

Main

Processing

Post

Processing

Intermediate

Version

Final Version

XSLT

Processor

XSLT

Processor

XML
Hornlog
RuleML with
Equality

Grailog
Visualizer
XSLT

SVG
Grailog
Visualization

SVG
Grailog
Visualization
with internal
JavaScript

Grailog
Visualizer
XSLT

Supported Grailog Elements (1)

• Predicates with n-ary relations for n ≥ 1

• Equality (Datalog+)

6

rel inst1 inst2 instninstn-1

inst1unaryrel

inst1 inst2

…

Supported Grailog Elements (2)

Single-premise rules containing:

• n-ary relations (n ≥ 1)

7

• Equality (Datalog+)

inst1,1 inst1,2 inst1,n1rel1

inst2,1 inst2,2rel2 inst2,n2

…

…

inst1,1 inst1,2

inst2,1 inst2,2

Supported Grailog Elements (3)

Multi-premise rules containing:

• n-ary relations (n ≥ 1)

8

• Equality (Datalog+)

inst1,1 inst1,2

inst2,1 inst2,2

instz,1 instz,2

. . .

rel1 term1,1 term1,2

rel2 term2,1 term2,2

relz termz,1 termz,2

…

…

…

. . .

termz,n
z

term2,n
2

term1,n
1

Supported Grailog Elements (4)
• Function Applications

• Predicates with (constructor) function application

in any position

9

inst1 inst2 instninstn-1
fun

…

rel inst1 instn-1

…

instn,1 instn,mn
fun

…

rel instn-1 instn
inst1,1 inst1,m1

fun
…

…

. . .

Supported Grailog Elements (5)

• Arbitrary Levels of Nested Function Applications

10

instn1
fun

…

instik instnk
fun

…
…

…

Grailog KS Viz Structure (1)

• Set up SVG file with an initial viewbox to

contain the drawings. Dimensions of viewbox

are determined using JavaScript

– Height is determined by a variable that is

updated with the last y-coordinate of each

new drawing

– Width is determined by a variable that stores

the greatest x-coordinate of all the drawings

• Datalog RuleML/XML files should not contain

namespaces in order to be processable

11

Grailog KS Viz Structure (2)

• SVG

– Drawings contain text, rectangles, polygons,

patterns, straight paths, rounded rectangles,

markers, and convex and concave paths

using cubic Bézier curve

12

Grailog KS Viz Structure (3)

• XSLT Template for <Implies>

– Check for single-premise rule

containing child <Atom>: Call <Atom> template

– Check for single-premise rule

containing child <Equal>: Call <Equal> template

– Check for multi-premise rule:

Call <And> template

13

14

Grailog KS Viz Structure (4)

• XSLT Template for <And>

– Determine the number of children of <And>

• If child is <Atom>, draw n-ary relation (n ≥ 1)

• If child is <Equal>, draw binary “=“ line

– Draw <And> contents within surrounding box

in the body of a rule

Grailog KS Viz Structure (5)

• XSLT Template for <Atom>

– If parent:

• is <Assert>, draw n-ary relation (n ≥ 1)

in labelnode normal form

• is <Implies>, draw n-ary relation (n ≥ 1)

as a single premise or conclusion of the rule

– If child: is <Expr>, draw nested function

application

15

Grailog KS Viz Structure (6)

• Internal JavaScript

– Calculates the coordinates used in the SVG

drawings

– Updates the variables used to determine the

SVG viewbox height and width

• XSLT & JavaScript

– Create unique variable names used in the

SVG drawings by concatenating constants

and positions of an element in the XML tree

16

17

Datalog+ Example: Two-Premise Rule
• “If an edge connects two vertices and the vertices are

the same, then the edge is a loop”

Conclusions
• Grailog KS Viz has been extended to the

labelnode normal form of Grailog including
n-ary (e.g., unary) predicates

• Visualizes Datalog+ with (head) Equality as a
binary predicate

• Single- and multi-premise rules may contain
any combination of n-ary relations and Equality in
the body premise(s) and the head

• Visualizes Hornlog nested function applications,
allowing arbitrary levels of nesting

• Tested on usual browsers: Firefox, Chrome, IE

• Instant visualization of 24KB RuleML/XML files

• From Grailog KS Viz 1.0 to Grailog KS Viz 2.0

18

http://2013.ruleml.org/presentations/Grailog KS Viz (Martin Koch, Sven Schmidt, Harold Boley, Rainer Herpers) - RuleML 2013 - Rule Challenge talk.pdf

Future Work

• Automate composition of main and post-processing

• Address any JavaScript security and stability issues
in browsers beyond Firefox, Chrome, and IE

• Complete extension for Hornlog's nested
function applications with arbitrary levels of nesting
and in arbitrary positions simultaneously

• Continue to improve software reusability
for future development

• Optional merging of labelnode copies

• Inverse translator, parsing Grailog into RuleML

• Extend for FOL, Higher-Order, Modal, ... RuleML

19

