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Knowledge Visualization

• Expression of knowledge through 

visualizations in order to communicate 

and analyze knowledge

• Visualizations increase the rate and quality of 

(human-to-human and machine-to-human) 

knowledge transfer

• (Semi-)Formal knowledge as used in 

Data Modeling, the Semantic Web, etc. 

can be visualized using (generalized) graphs
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Graph Inscribed Logic (Grailog)

• Grailog used to present languages of the

Rule Markup Language (RuleML) system

• Highly expressive generalized graphs for 

logical knowledge visualization 

(in labelnode normal form)

• Contain directed n-ary hyperarcs that 

begin at a class/relation labelnode, 

pass through n-1 intermediate argument 

labelnodes, and point to the nth argument 

labelnode
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Grailog KS Viz 2.0: Subset of

Horn Logic with Equality in SVG (1)

• XML documents containing HornlogEq

RuleML are transformed – using an 

XSLT stylesheet and processor –

into a Grailog visualization in SVG format 

that contains JavaScript

• Post-processing the SVG removes 

the JavaScript, which is no longer needed 

after positioning the SVG elements
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Grailog KS Viz 2.0: Subset of

Horn Logic with Equality in SVG (2)
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Supported Grailog Elements (1)

• Predicates with n-ary relations for n ≥ 1

• Equality (Datalog+)
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Supported Grailog Elements (2)

Single-premise rules containing:

• n-ary relations (n ≥ 1) 
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• Equality (Datalog+)  

inst1,1 inst1,2 inst1,n1rel1

inst2,1 inst2,2rel2 inst2,n2

…

…

inst1,1 inst1,2

inst2,1 inst2,2



Supported Grailog Elements (3)

Multi-premise rules containing:

• n-ary relations (n ≥ 1) 
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• Equality (Datalog+)  

inst1,1 inst1,2

inst2,1 inst2,2

instz,1 instz,2

.    .    .

rel1 term1,1 term1,2

rel2 term2,1 term2,2

relz termz,1 termz,2

…

…

…
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Supported Grailog Elements (4)
• Function Applications

• Predicates with (constructor) function application 

in any position
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inst1 inst2 instninstn-1
fun

…

rel inst1 instn-1

…

instn,1 instn,mn
fun

…
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…

…
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Supported Grailog Elements (5)

• Arbitrary Levels of Nested Function Applications
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fun

…
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…
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Grailog KS Viz Structure (1)

• Set up SVG file with an initial viewbox to 

contain the drawings.  Dimensions of viewbox 

are determined using JavaScript

– Height is determined by a variable that is 

updated with the last y-coordinate of each 

new drawing

– Width is determined by a variable that stores 

the greatest x-coordinate of all the drawings

• Datalog RuleML/XML files should not contain 

namespaces in order to be processable
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Grailog KS Viz Structure (2)

• SVG

– Drawings contain text, rectangles, polygons, 

patterns, straight paths, rounded rectangles, 

markers, and convex and concave paths 

using cubic Bézier curve
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Grailog KS Viz Structure (3)

• XSLT Template for <Implies>

– Check for single-premise rule 

containing child <Atom>:  Call <Atom> template

– Check for single-premise rule 

containing child <Equal>:  Call <Equal> template

– Check for multi-premise rule:  

Call <And> template
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Grailog KS Viz Structure (4)

• XSLT Template for <And>

– Determine the number of children of <And>

• If child is <Atom>, draw n-ary relation (n ≥ 1) 

• If child is <Equal>, draw binary “=“ line

– Draw <And> contents within surrounding box 

in the body of a rule



Grailog KS Viz Structure (5)

• XSLT Template for <Atom>

– If parent:

• is <Assert>, draw n-ary relation (n ≥ 1) 

in labelnode normal form  

• is <Implies>, draw n-ary relation (n ≥ 1) 

as a single premise or conclusion of the rule

– If child:  is <Expr>, draw nested function 

application
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Grailog KS Viz Structure (6)

• Internal JavaScript

– Calculates the coordinates used in the SVG 

drawings

– Updates the variables used to determine the 

SVG viewbox height and width

• XSLT & JavaScript

– Create unique variable names used in the 

SVG drawings by concatenating constants 

and positions of an element in the XML tree
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Datalog+ Example: Two-Premise Rule
• “If an edge connects two vertices and the vertices are 

the same, then the edge is a loop”



Conclusions
• Grailog KS Viz has been extended to the 

labelnode normal form of Grailog including 
n-ary (e.g., unary) predicates

• Visualizes Datalog+ with (head) Equality as a 
binary predicate

• Single- and multi-premise rules may contain 
any combination of n-ary relations and Equality in 
the body premise(s) and the head

• Visualizes Hornlog nested function applications, 
allowing arbitrary levels of nesting 

• Tested on usual browsers: Firefox, Chrome, IE

• Instant visualization of 24KB RuleML/XML files

• From Grailog KS Viz 1.0 to Grailog KS Viz 2.0
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http://2013.ruleml.org/presentations/Grailog KS Viz (Martin Koch, Sven Schmidt, Harold Boley, Rainer Herpers) - RuleML 2013 - Rule Challenge talk.pdf


Future Work

• Automate composition of main and post-processing

• Address any JavaScript security and stability issues 
in browsers beyond Firefox, Chrome, and IE

• Complete extension for Hornlog's nested 
function applications with arbitrary levels of nesting 
and in arbitrary positions simultaneously

• Continue to improve software reusability 
for future development

• Optional merging of labelnode copies

• Inverse translator, parsing Grailog into RuleML

• Extend for FOL, Higher-Order, Modal, ... RuleML
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