
Translating

HornlogEq RuleML to Grailog

for SVG Visualization

Leah Bidlake

RuleML Webinar

June 20, 2016

Outline

• Introduction

• Related Work

• Objectives

• Grailog KS Viz 2.0

– Architecture

– Implementation

– Test Case

• Conclusions

– Results

– Future Work

1

Knowledge Visualization

• Knowledge visualization supports transfer and

analysis of knowledge

• Visualization increases the rate and quality of

(human-to-human and machine-to-human)

knowledge transfer and refinement

• (Semi-)Formal knowledge as used in

Data Modeling, the Semantic Web, etc.

can be visualized using (generalized) graphs

2

Graph Inscribed Logic (Grailog) (1)

• Grailog is used to present languages of the

Rule Markup Language (RuleML) system

• Highly expressive generalized graphs for

logical knowledge visualization

(in labelnode normal form)

• Contain directed n-ary hyperarcs that

begin at a class/relation labelnode,

pass through n–1 intermediate argument nodes,

and point to the nth argument node

3

Graph Inscribed Logic (Grailog) (2)
• Conference registration knowledge about

participants who can be Student, Late (vs. Early), etc.

• Participant <Rel>ation becomes labelnode

starting hyperarc arrow

• Hornlog RuleML:

• Grailog:

4

Related Work

• Fresnel Editor

– Visualizes Resource Description Framework

(RDF) data using simple data modeling

• GrOWL

– For visualizing and editing

Web Ontology Language (OWL) as graphs

– Provides more descriptive semantics

5

Objectives

• Proceed from earlier Datalog to computationally

complete language on the level of Horn Logic

(Hornlog) by visualizing nested terms

• Transformation from Hornlog with Equality

to Grailog visualization

• Visualizations in labelnode normal form of

Grailog (includes classes as unary relations)

• Remove internal JavaScript from the

Grailog/SVG to increase efficiency and security

6

Design

• XSLT translation for end users on common

modern Web browsers that support XSLT 2.0

• Source RuleML/XML:

– Requires stylesheet processing instruction to

automate transformation in the browser

– Cannot contain namespaces

• Target SVG/XML:

– Node-copy normal form of Grailog used to allow

scalability for large KBs and human readability

– Contains internal JavaScript that will be

optionally removed

7

Grailog KS Viz 2.0:

Horn Logic with Equality in SVG (1)

• The Renderer transforms XML documents

containing HornlogEq RuleML

– using an XSLT stylesheet and processor –

into Grailog visualizations in SVG format

that contain JavaScript

• The Purifier removes the JavaScript that is

no longer required in the static SVG

8

Grailog KS Viz 2.0 Workflow:

Horn Logic with Equality in SVG (2)

9

Renderer Purifier
(optional)

XSLT

Processor

XSLT

Processor

RuleML/XML
Hornlog
RuleML with
Equality
referring to
Renderer

Renderer
XSLT

SVG/XML
Grailog
Visualization
without any
JavaScript

SVG/XML
Grailog
Visualization
with internal
JavaScript

Purifier
XSLT

SVG/XML
Saved image
(with internal
JavaScript)
referring to
Purifier

Grailog KS Viz Implementation (1)

• SVG canvas allows for a virtually infinite area

for the content to be rendered

• SVG Viewport

– Finite rectangular subregion of the canvas

– Originates at the upper-left corner

– Expands downward and to the right

– Dimensions are determined by the attributes

width and height

10

(0, 0) + x

+ y

Grailog KS Viz Implementation (2)

• SVG

– Drawings contain text, rectangles, polygons,

patterns, straight paths, rounded rectangles,

markers

– Labelnodes and function applications require

the use of cubic Bézier curves to draw

convex and concave paths

11

Grailog KS Viz Implementation (3)

• SVG

– Unique ID attributes, used to identify

each element, are created by concatenating

strings and numbers.

– Strings identify the type of SVG element

(rect, text, etc.) and Grailog structure

(relation, rule, etc.)

– Numbers refer to the hierarchical position

of the node in the XML tree

12

Grailog KS Viz Implementation (4)

• XPath Expressions

– Used for addressing parts of an XML

document by tracing its hierarchical structure

– Location paths select a set of nodes relative

to the context node

• XPath Expression Limitations

– Inability to distinguish between the

descendants of siblings that have the same

path to the parent node

– No function to determine the level of nesting

13

Grailog KS Viz Implementation (5)

• Internal JavaScript

– Calculates, assigns, and accesses the

position and size values of the SVG elements

– Updates the variables used to determine the

SVG viewport height and width

– Accesses the contents of the nodes

provided by the user

14

Grailog KS Viz Implementation (6)

• Purifier removes JavaScript from the

static SVG image

– Requires stylesheet processing instruction

in the prolog of the SVG file

– Assures users that images do not contain

malicious scripts

– Reduces file size of SVG visualization

– Requires less time to render the SVG

visualization

15

Grailog KS Viz Implementation (7)

• XSLT Templates

– Templates given RuleML tag names are

applied to nodes with matching pattern

– Named templates are given descriptive names

and are applied when called by name

– Template parameters specify variables whose

values are set when the template is called;

this allows the binding of the variables to be

updated or changed

16

Renderer XSLT Implementation

• Set up SVG file with an initial viewport

to contain the drawings

• Dimensions of viewport are determined

using JavaScript

– Height is determined by a variable that is

updated with the last y-coordinate of

each new drawing

– Width is determined by a variable that

stores the greatest x-coordinate of

all the drawings

17

<Atom> Template (1)

• Draws n-ary relation (n ≥ 1) in labelnode

normal form as facts, or as the

single premise and/or conclusion of a rule

• Draws the relation node found in the

first position inside a labelnode

18

inst1unaryrel

rel inst1 inst2 instninstn-1

…

• Invokes <NestedExpr> template to draw

relations with arbitrary levels of nested

(constructor) function application in any position

19

rel inst1 instn-1

…

instn,1 instn,mn
fun

…

rel instn-1 instn
inst1,1 inst1,m1

fun
…

…

. . .

<Atom> Template (2)

<Equal> Template
• Draws Datalog+ and Hornlog+ Equality as a

special binary atom, or as the

single premise and/or conclusion of a rule

• No orientation tags to distinguish placement

• Invokes <NestedExpr> template to draw

nested function application

20

inst1 inst2

<NestedExpr> Template (1)

• Recursive, named template

• Parameters passed by calling template

replace default values and are used to

construct unique ID names for elements

• Drawing begins with the outermost function

node, then draws the siblings and descendants

21

instn1
fun

…

instik instnk
fun

…
…

…

<NestedExpr> Template (2)

• Surrounding boxes of functions:

– Drawn after the function and argument nodes

– Innermost surrounding box drawn first etc.

– Required to expand down and to the right

to surround any depth of nesting

– Vertical spacing is dependent on level of nesting

• Height of surrounding box for each function is

the product of a constant, and the difference

between the function node’s descendants

and children (≥ level of nesting)

22

<NestedExpr> Template (3)

• To distinguish between the descendants of

siblings that are both nested function

applications:

– The calling template sets a parameter to

the number of preceding function siblings

– The parameter is only updated when

the template is called recursively

23

24

<And> Template
• Draws the premises of a multi-premise rule

• Premises may include relations and equality with

arbitrary levels of nested function applications

inst1,1 inst1,2

inst2,1

instz,1 instz,2

. . .

inst1,1 inst1,m1
fun

…

<Implies> Template
• Draws the surrounding rectangles for the premise(s)

and conclusion of single- and multi-premise rules,

and the double-shafted Implies arrow between them

• Invokes <And>, <Equal> and/or <Atom> templates

to draw contents of the rule

25

rel1 term1,1 term1,2

rel2 term2,1 term2,2

…

…

. . .

relz termz,1 termz,2

…
termz,n

z

term1,n
1

inst1,1 inst1,m1
fun

…

Purifier XSLT Implementation (1)

• XSLT Identity Template

– Commonly known recursive template

– Matches all node patterns and recursively

copies all nodes and their attributes

26

Purifier XSLT Implementation (2)

• XSLT Template <svg:script>

– Template for node with matching pattern

– Matches a specific node pattern, resulting in a

higher priority than the identity template

– Script nodes are only processed by this

template and not by the identity template

– Empty template results in script nodes not

being copied

– Amounts to omission of all script nodes

27

Test Cases in Math Education

• Set of input and output pairs used to

evaluate functionality and features of the tool

• Graph theory knowledge visualized in Grailog

demonstrates the accurateness of the tool

and its ability to visualize complex terms

with arbitrary levels of nesting

28

29

Hornlog Example: Multi-Premise Rule

“If Vk is a vertex,

Vj is a vertex,

and the pair of

vertices Vk, Vj

is an edge,

then Vk is an

adjacent vertex to Vj”

Use Case in Financial Math

• Teaches business rules for managing the

financial aspect of a non-profit organization

• Financial rules expressed in Hornlog RuleML

were transformed to Grailog visualization

• Demonstrates uses of the tool:

– Corporate memory

– Knowledge transfer (training new personnel)

– Knowledge validation

30

Financial Rules
31

Results (1)

• Grailog KS Viz has been extended to the
labelnode normal form of Grailog with
n-ary (including unary) relations

• Visualizes Datalog+ and Hornlog+ Equality

• Visualizes Hornlog’s nested function applications,
allowing arbitrary levels of nesting

• Tested on common modern Web browsers:
IE, Firefox, Chrome, Safari

• Instant rendering of test cases and use case

• Grailog KS Viz 2.0 provides security and efficiency
for viewing, sharing, and storing visualizations

32

Results (2)
• Formal validation of resulting SVG 1.1 by

W3C Markup Validation Service

• Use of template parameters demonstrates

improved design to increase reusability

for future development

• Removal of JavaScript by the Purifier XSLT:

– Reduces the time to generate the visualizations

– Results in significantly smaller file sizes

– Provides assurances of security when sharing

the visualizations

• Download:
http://www2.unb.ca/~lbidlak1/GrailogKSViz2.0.html

33

http://www2.unb.ca/~lbidlak1/GrailogKSViz2.0.html

Future Work

• Complement browser-XSLT by
online-XSLT-processor use

• Continue to improve software reusability

• Optional merging of labelnode copies

• Inverse translator, parsing Grailog into RuleML

• Extend to visualize more languages of RuleML
such as First Order Logic (FOL), Higher-Order,
and Modal RuleML

34

