Grailog KS Viz 2.0:
Graph-Logic
Knowledge Visualization by
XML-Based Translation

Leah Bidlake
Master Thesis Defence
June 22, 2016
UNB Fredericton

Outline

Introduction
Related Work
Objectives

Grailog KS Viz 2.0
— Architecture

— Implementation

— Test Case

Conclusions

— Results
— Future Work

Knowledge Visualization

« Knowledge visualization supports transfer and
analysis of knowledge

 Visualization increases the rate and quality of
(human-to-human and machine-to-human)
knowledge transfer and refinement

* (Semi-)Formal knowledge as used in
Data Modeling, the Semantic Web, etc.
can be visualized using (generalized) graphs

Graph Inscribed Logic (Grailog) (1)

« Grailog is used to present languages of the
Rule Markup Language (RuleML) system

« Highly expressive generalized graphs for
ogical knowledge visualization
(in labelnode normal form)

« Contain directed n-ary hyperarcs that
begin at a class/relation labelnode,
pass through n—1 intermediate argument nodes,
and point to the n" argument node

Graph Inscribed Logic (Grailog) (2)

» Conference registration knowledge about
participants who can be Student, Late (vs. Early), etc.

« Participant <Rel>ation becomes labelnode
starting hyperarc arrow

* Hornlog RuleML:

<Atom><Rel>participant</Rel> <Expr> <Ind>»Student</Ind><Ind>Late</Ind></Atom>
<Fun per="copy">1id</Fun>
<Ind>179676719</Ind>
</Expr>
« Grailog:

L
Student Late
. ‘ 17967719

k" ——

Related Work

* Fresnel Editor

— Visualizes Resource Description Framework
(RDF) data using simple data modeling

e GrOWL

— For visualizing and editing
Web Ontology Language (OWL) as graphs

— Provides more descriptive semantics

Objectives

Proceed from earlier Datalog to computationally
complete language on the level of Horn Logic
(Hornlog) by visualizing nested terms

Transformation from Hornlog with Equality
to Grailog visualization

Visualizations in labelnode normal form of
Grallog (includes classes as unary relations)

Remove internal JavaScript from the
Grailog/SVG to increase efficiency and security

Design

« XSLT translation for end users on common
modern Web browsers that support XSLT 2.0

 Source RuleML/XML:

— Requires stylesheet processing instruction to
automate transformation in the browser

— Cannot contain namespaces

« Target SVG/XML.:

— Node-copy normal form of Grailog used to allow
scalabllity for large KBs and human readabillity

— Contains internal JavaScript that will be
optionally removed

Grailog KS Viz 2.0:
Horn Logic with Equality in SVG (1)

* The Renderer transforms XML documents
containing HornlogEqg RuleML
— using an XSLT stylesheet and processor —
iInto Grailog visualizations in SVG format
that contain JavaScript

* The Purifier removes the JavaScript that Is
no longer required in the static SVG

Grailog KS Viz 2.0 Workflow:

Horn Logic with Equality in SVG (2)

Renderer

RuleML/XML
Hornlog
RuleML with XSLT
Equality Processor
referring to 3
Renderer

Renderer

XSLT

SVG/XML

Grailog
Visualization
with internal
JavaScript

Purifier
(optional)

SVG/XML

Saved image
(with internal

JavaScript)
referring to
Purifier

v

XSLT
Processor

A

SVG/XML

Grailog

- Visualization
without any
JavaScript

Purifier
XSLT

Grailog KS Viz Implementation (1)

 SVG canvas allows for a virtually infinite area
for the content to be rendered

* SVG Viewport
— Finite rectangular subregion of the canvas
— QOriginates at the upper-left corner
— Expands downward and to the right

— Dimensions are determined by the attributes
width and height

(0,0) ¢ - +X

+yv

10

Grailog KS Viz Implementation (2)

¢ SVG

— Drawings contain text, rectangles, polygons,
patterns, straight paths, rounded rectangles,
markers

— Labelnodes and function applications require
the use of cubic Bézier curves to draw
convex and concave paths

el @

11

Grailog KS Viz Implementation (3)

¢ SVG

— Unique ID attributes, used to identify
each element, are created by concatenating
strings and numbers.

— Strings identify the type of SVG element
(rect, text, etc.) and Grailog structure
(relation, rule, etc.)

— Numbers refer to the hierarchical position
of the node in the XML tree

12

Grailog KS Viz Implementation (4)

« XPath Expressions

— Used for addressing parts of an XML
document by tracing its hierarchical structure

— Location paths select a set of nodes relative
to the context node

« XPath Expression Limitations

— Inability to distinguish between the
descendants of siblings that have the same
path to the parent node

— No function to determine the level of nesting

13

Grailog KS Viz Implementation (5)

* Internal JavaScript

— Calculates, assigns, and accesses the
position and size values of the SVG elements

— Updates the variables used to determine the
SVG viewport height and width

— Accesses the contents of the nodes
provided by the user

14

Grailog KS Viz Implementation (6)

* Purifier removes JavaScript from the
static SVG image

— Requires stylesheet processing instruction
In the prolog of the SVG file

— Assures users that images do not contain
malicious scripts

— Reduces file size of SVG visualization

— Requires less time to render the SVG
visualization

15

Grailog KS Viz Implementation (7)

« XSLT Templates

— Templates given RuleML tag names are
applied to nodes with matching pattern

— Named templates are given descriptive names
and are applied when called by name

— Template parameters specify variables whose
values are set when the template is called,;
this allows the binding of the variables to be
updated or changed

16

Renderer XSLT Implementation

« Set up SVG file with an initial viewport
to contain the drawings

* Dimensions of viewport are determined
using JavaScript

— Height is determined by a variable that is
updated with the last y-coordinate of
each new drawing

— Width is determined by a variable that
stores the greatest x-coordinate of
all the drawings

17

<Atom> Template (1)

* Draws n-ary relation (n = 1) in labelnode
normal form as facts, or as the
single premise and/or conclusion of a rule

 Draws the relation node found in the
first position inside a labelnode

nst,

rel inst, inst,] [inst,_,| |inst,

rel

rel

<Atom> Template (2)

* Invokes <NestedExpr> template to draw
relations with arbitrary levels of nested
(constructor) function application in any position

19

: > Inst_,| |Inst,
fun | |Insty 4 Inst .
u | u
y //
Inst; Inst,,_; _ e
fun | |Inst, ; INSt,

« Draws Datalog* and Hornlog* Equality as a
special binary atom, or as the
single premise and/or conclusion of a rule

No orientation tags to distinguish placement
Invokes <NestedExpr> template to draw

<Equal> Template

nested function application

Inst,

\

-

Inst, Inst,
//
\ _//
e e inst
" inst;, ‘ instn; -
| — T
T

<NestedExpr> Template (1)

* Recursive, named template

« Parameters passed by calling template
replace default values and are used to
construct unigue ID names for elements

« Drawing begins with the outermost function

node, then draws the siblings and descendants

21

Inst;,

" inst,,

Inst,,,

<NestedExpr> Template (2)

« Surrounding boxes of functions:
— Drawn after the function and argument nodes
— Innermost surrounding box drawn first etc.

— Required to expand down and to the right
to surround any depth of nesting

— Vertical spacing is dependent on level of nesting

» Height of surrounding box for each function is
the product of a constant, and the difference
between the function node’s descendants
and children (= level of nesting)

22

<NestedExpr> Template (3)

* To distinguish between the descendants of
siblings that are both nested function
applications:

— The calling template sets a parameter to
the number of preceding function siblings

— The parameter is only updated when
the template is called recursively

address
W i i o FFFEE T T T TS —
EE(stresetName stresetNum m

23

<And> Template

* Draws the premises of a multi-premise rule

* Premises may include relations and equality with

arbitrary levels of nested function applications

/ Inst, ,

~

~

Inst, ,
Inst, ,
fun inst, , inst, .,
Inst, 4 Inst, ,

24

25

<Implies> Template

* Draws the surrounding rectangles for the premise(s)
and conclusion of single- and multi-premise rules,
and the double-shafted Implies arrow between them

* Invokes <And>, <Equal> and/or <Atom> templates
to draw contents of the rule

/- R ™
@ term, , term, , term, !

el,
rel,) [term,, term, ,
: e =
fun inst, , inst, .,
\ L ~

@ term, , term, , term, 2 }

)

Purifier XSLT Implementation (1)

« XSLT ldentity Template
— Commonly known recursive template

— Matches all node patterns and recursively
copies all nodes and their attributes

26

Purifier XSLT Implementation (2)

« XSLT Template <svg:script>
— Template for node with matching pattern

— Matches a specific node pattern, resulting in a
higher priority than the identity template

— Script nodes are only processed by this
template and not by the identity template

— Empty template results in script nodes not
being copied
— Amounts to omission of all script nodes

27

Test Cases In Math Education

» Set of input and output pairs used to
evaluate functionality and features of the tool

» Graph theory knowledge visualized in Grailog
demonstrates the accurateness of the tool
and its ability to visualize complex terms
with arbitrary levels of nesting

28

Hornlog Example: Multi-Premise Rule
“If VK is a vertex, <Inplies> @

V| is a vertex,

) <Atom:
and the pair of ¢Rels»vertex</Rel>
vertices VK, V] Vars>Vk</Var> _
. </ Atom> @
IS an edge, cntoms
then VK is an £Rel»vertex</Rel:>
adjacent vertex to Vj” VarsVj</vars - -
</Atom: .
<Atom:
<Rel>edge</Rel>

o

<Fun per="copy"»pair</Funz
<Var>Vk</Vars
<VarxVj</Vars
</Exprz
</Atom>
</And>
<Atom>
<Rel>adjacentVertex</Rel>) lL !
<Var>Vk</Vars
<Var>Vj</var>
</Atom>

</Implies: @ vk

s R

Use Case In Financial Math

* Teaches business rules for managing the
financial aspect of a non-profit organization

* Financial rules expressed in Hornlog RuleML
were transformed to Grailog visualization

« Demonstrates uses of the tool:
— Corporate memory

— Knowledge transfer (training new personnel)
— Knowledge validation

30

participant

Student

Late

179676719

Late 250.00

Financial Rules

-

participant

registrationFee LParticipantTypeJ LReqistrationTypeJ | AmountUSD

registrationFes Student

ﬁ IDNumber

LPart icipantTypeJ ’LRegi strat ionTypej

registration

H IDNumber

I,\ParticipantTypeJ LRegistrationTypeJ LAmountUSDj

31

32

Results (1)

Grailog KS Viz has been extended to the
labelnode normal form of Grailog with
n-ary (including unary) relations

Visualizes Datalog* and Hornlog* Equality

Visualizes Hornlog's nested function applications,
allowing arbitrary levels of nesting

Tested on common modern Web browsers:
|E, Firefox, Chrome, Safari

Instant rendering of test cases and use case

Grailog KS Viz 2.0 provides security and efficiency
for viewing, sharing, and storing visualizations

33

Results (2)

Formal validation of resulting SVG 1.1 by
W3C Markup Validation Service

Use of template parameters demonstrates
Improved design to increase reusability
for future development

Removal of JavaScript by the Purifier XSLT:
— Reduces the time to generate the visualizations
— Results in significantly smaller file sizes

— Provides assurances of security when sharing
the visualizations

Download:
http://www?2.unb.ca/~Ibidlakl/GrailogKSViz2.0.html

http://www2.unb.ca/~lbidlak1/GrailogKSViz2.0.html

Future Work

Complement browser-XSLT by
online-XSLT-processor use

Continue to improve software reusability
Optional merging of labelnode copies
Inverse translator, parsing Grailog into RuleML

Extend to visualize more languages of RuleML
such as First Order Logic (FOL), Higher-Order,
and Modal RuleML

34

